Post-Maneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions
نویسندگان
چکیده
This paper describes the use of polynomial chaos expansions to approximate the probability of a collision between two satellites after at least one performs a translation maneuver. Polynomial chaos provides a computationally efficient means to generate an approximate solution to a stochastic differential equation without introducing any assumptions on the a posteriori distribution. The stochastic solution then allows for orbit state uncertainty propagation. For the maneuvering spacecraft in the presented scenarios, the polynomial chaos expansion is sparse, allowing for the use of compressive sampling methods to improve solution tractability. This paper first demonstrates the use of these techniques for possible intra-formation collisions for the Magnetospheric Multiscale mission. The techniques are then applied to a potential collision with debris in low Earth orbit. Results demonstrate that these polynomial chaos-based methods provide a Monte Carlo-like estimate of the collision probability, including adjustments for a spacecraft shape model, with only minutes of computation cost required for scenarios with a probability of collision as low as 10−6. A graphics processing unit (GPU) implementation of the polynomial chaos expansion analysis further reduces the computation time for the scenarios presented.
منابع مشابه
Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification
Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification by Justin Gregory Winokur Department of Mechanical Engineering & Materials Science Duke University Date: Approved: Omar M. Knio, Supervisor
متن کاملEvaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos
Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. When tailoring the orthogonal polynomial bases to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent convergence properties can be achieved for general pro...
متن کاملPropagation of Uncertainties Modelled by Parametric P-boxes Using Sparse Polynomial Chaos Expansions
Advanced simulations, such as finite element methods, are routinely used to model the behaviour of physical systems and processes. At the same time, awareness is growing on concepts of structural reliability and robust design. This makes efficient quantification and propagation of uncertainties in computation models a key challenge. For this purpose, surrogate models, and especially Polynomial ...
متن کاملSatellite Collision Probability Estimation Using Polynomial Chaos
This paper presents the application of polynomial chaos (PC) to estimating the probability of collision between two spacecraft. Common methods of quantifying this probability for conjunction assessment use either Monte Carlo analyses or include simplifying assumptions to improve tractability. A PC expansion, or PCE, provides a means for approximating the solution to a large set of stochastic or...
متن کاملOn the Convergence of Generalized Polynomial Chaos Expansions
A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which im...
متن کامل